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Abstract
The influence of the mismatch effect on thin ferroelectric film properties has
been studied in the phenomenological theory framework. The polarization
dependent part of the surface energy that defined the boundary conditions for the
Euler–Lagrange differential equation was written as a surface tension energy.
The latter was expressed via the surface polarization and the tension tensor
related to the mismatch of the substrate and film lattice constants and thermal
expansion coefficients. The interfacial strain caused by the mismatch effect
induces the additional surface polarization Pm via a piezoelectric effect that
arises near the surface in any film.

The new parameter Pm/PS (PS is the known value of the spontaneous
polarization in the bulk ferroelectric material at T = 0 K) appeared in
the derived phenomenological equations. So we calculate the influence of
the parameter Pm/PS on the depth distribution of the dimensionless film
polarization P/PS, its dependence on temperature, film thickness and applied
electric field, as well as that on the hysteresis loop shape, coercive field values,
phase diagram and average dielectric susceptibility temperature dependence.
Non-zero Pm/PS values cause a mismatch induced thickness dependent internal
electric field Em. We have shown that this field drastically influences all the
properties. In particular, the polarization profile becomes asymmetrical, the
polarization temperature dependence resembles that in the external electric field
and there is a possibility of external field screening by the internal field Em.
The asymmetry obtained for the hysteresis loop suggests that it is possible
that the self-polarization phenomenon recently observed in some films is
related to the mismatch effect. The thickness induced ferroelectric–paraelectric
phase transition has been shown to exist when |Pm|/PS < 1. A large enough
ratio |Pm|/PS > 1 could be the physical reason for the ferroelectric phase
conservation in ultrathin film. The possibility of observing the peculiarities
of the film property temperature and thickness dependences related to the
mismatch effect is discussed.
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1. Introduction

The influence of the substrate on ferroelectric thin film properties is known to be related
to the appearance of mechanical tension due to mismatch between the lattice constants and
thermal expansion coefficients of the film and its substrate as well as growth imperfections.
This phenomenon was taken into account by consideration of the uniform mechanical tension
tensor uii (i = x , y, when z is the direction normal to the surface). Inclusion of this tensor into
the free energy of bulk ferroelectrics, taking into account its coupling to electric polarization
via electrostriction in cubic lattices and subsequent minimization of the free energy, has
shown [1, 2] lowering of the cubic symmetry to tetragonal symmetry as one could expect for
any film and renormalization of free energy coefficients and, so, ferroelectric phase transition
temperature. The results obtained are characteristic for bulk ferroelectrics under uniform
mechanical tension of the symmetry considered. The effects obtained in [1, 2] were completely
independent of the film thickness and so they did not contribute to the size effects of the film
properties. The latter are known to be related to the difference between the surface and bulk
properties, so the gradient of the polarization appears in the free energy functional, which after
variation gives the Euler–Lagrange differential equation with boundary conditions related to
the surface energy parameters (see e.g. [3] and references therein). It is obvious that the
mechanical tension related to the mismatch effects can contribute to the surface energy and
so to the boundary conditions and finally to all the properties of the film. On the other hand,
the appearance of misfit dislocations at some critical distance from the film surface, when the
appearance of the dislocations becomes energetically preferable, can essentially decrease the
mechanical tension inside a thick enough film, taking into account the critical thickness for
the appearance of dislocations being several tens or hundreds of nanometres [4, 5]. Therefore
for films thinner than the critical thickness for misfit dislocations, the mechanical tension can
be considered as a uniform one, while for the thicker films it transforms into a smaller non-
uniform tension because of the influence of misfit dislocations. The authors of [4, 5] propose
considering the latter effect approximately by substitution of some smaller effective tension for
the uii value, taking into account that for thick enough films the mechanical tension becomes
negligibly small.

It is obvious that the mechanical tension effect is the most important for thin enough
ferroelectric films and it has to be included both in the surface energy and in the ‘bulk’ part of
the free energy functional. In the present work we performed for the first time calculations of
the dielectric permittivity, the characteristics of the thickness induced ferroelectric–paraelectric
transition and the conditions for its absence, self-polarization and hysteresis loops, by solution
of the Euler–Lagrange equation for inhomogeneous polarization with boundary conditions
which include the new parameter Pm/PS originating from the mismatch effect.

2. Model and general formalism

2.1. Free energy functional

Let us consider a ferroelectric thin film with the thickness l (−l/2 � z � l/2) and polarization
in the direction z normal to the surface (Pz ≡ P). In the phenomenological theory approach
the free energy functional can be written in the form [3]

�G = G − G0 =
∫

gv dv +
∫

gs ds. (1)

Here the first and the second integrals reflect the polarization dependent contribution of the
bulk and the surface of the film, while G0 is the polarization independent part of the free energy.
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The bulk free energy density gv can be represented as

gv = αP2

2
+

β P4

4
+

δ

2

(
dP

dz

)2

− P

(
E0 +

Ed

2

)
. (2)

Here the coefficients α, β are supposed to be renormalized by mechanical tension on the basis
of the procedure developed in [1]; E0 is the external electric field; Ed is the depolarization
field and its value for the case of single-domain insulator film with superconducting electrodes
can be written in the form [6]

Ed = 4π(P̄ − P). (3)

Hereafter a bar over a letter denoting a physical quantity represents spatial averaging over
the film thickness. It is seen that in the bulk samples with homogeneous polarization P̄ = P ,
the depolarization field is absent (Ed = 0), while in the thin films with inhomogeneous
polarization, Ed �= 0. It should be noted that equation (2) is suitable for the description of the
second-order phase transitions with parameters β > 0, δ > 0.

Because the surface energy is related to the surface tension [7], it is possible to represent
the second term in equation (1) in a form like that in [8]:

Gs =
2∑

i=1

∫
µi u

(i)
xx u(i)

yy dx dy. (4)

Here the parameters µ and u j j ( j = x, y) are respectively the surface tension coefficient and
the strain tensor components; i = 1, 2 reflects the contribution of the film’s two surfaces.

In what follows we will consider two main contributions to the deformation tensor, namely
one considered in [8], related to the surface polarization Psur via the piezoelectric effect that
exists even in a cubic symmetry lattice near the film surface, and a second one related to
mismatch effects discussed in the introduction. Therefore

u(i)
xx = u(i)

xxm + d(i)
xxz P(i)

zi , u(i)
yy = u(i)

yym + d(i)
yyz P(i)

zi , (5)

where z1 = l/2, z2 = −l/2, d j j z is the coefficient of the piezoelectric effect; u j jm is the tensor
of the mechanical strain which is proportional to the difference in lattice constants and thermal
expansion coefficients between a substrate and a film as well as to the growth imperfections.
In what follows we will consider an epitaxial film with bulk cubic symmetry, e.g. BaTiO3,
PbTiO3. In such cases u(i)

xx = u(i)
yy because d(i)

xxz = d(i)
yyz ≡ d(i), u(i)

xxm = u(i)
yym ≡ u(i)

m and so the

product u(i)
xx u(i)

yy in equation (4) can be rewritten as u(i)2
xx = u(i)2

m + 2d(i)u(i)
m Pzi + d(i)2 P2

zi , where
the first term is independent of the polarization, while the last two terms are governed by the
surface free energy. Taking into account equations (2)–(5), the free energy (1) acquires the
form

�G(P) = 1

l

∫ l/2

−l/2
dz

[
α

2
P2(z) +

β

4
P4(z) +

δ

2

(
dP(z)

dz

)2

− P(z)E0

]

+
2π

l

∫ l/2

−l/2
dz(P(z) − P̄)2 +

δ

2l

[
(P(l/2) + P(1)

m )2

λ1
+

(P(−l/2) + P(2)
m )2

λ2

]
.

(6)

Hereafter we use the following parameters:

λ1,2 = δ

2µ1,2d2
, P(1,2)

m ≡ u(1,2)
m

d
. (7)
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Figure 1. The scheme of the film on the substrate (///////).

Since the signs of the parameters um and d can be positive or negative, both Pm > 0 and
Pm < 0 are expected. Because of this we will choose the sign of Pm by comparison with
experiment. The extrapolation lengths λ1,2 can only be positive.

The renormalized coefficient α in (6) has the form [1]

α(T ) = αT (T − T ∗
c ), T ∗

c = Tc +
2Q12um

αT (S11 + S12)
. (8)

Here parameters Tc, αT , Q12 and S11, S12 are respectively the ferroelectric transition
temperature, inverse Curie constant, electrostriction coefficient and elastic modulus, regarded
as known for the bulk material. It follows from the expression for T ∗

c in equation (8) that for
the given substrate–film pair we can have T ∗

c < Tc for um > 0 or T ∗
c > Tc for um < 0, because

Q12 < 0 for materials with perovskite structure [9]. It should be noted that T ∗
c corresponds

to the ferroelectric–paraelectric transition temperature of bulk material under compressive or
tensile external pressure of the symmetry considered.

2.2. The Euler–Lagrange equation and boundary conditions

The equation for calculation of the polarization can be obtained by variation over the
polarization of the free energy functional (6). This yields the following Euler–Lagrange
equations and boundary conditions:

αP + β P3 − δ
d2 P

dz2
= E0 + 4π(P̄ − P), (9)(

P + λ1
dP

dz

)∣∣∣∣
z=l/2

= −P(1)
m ,

(
P − λ2

dP

dz

)∣∣∣∣
z=−l/2

= −P(2)
m . (10)

In what follows we will consider the realistic situation of a film on a substrate with a free-
standing upper surface, where parameter u(1)

m = 0 and so P(1)
m = 0. To find the transition

temperature of the ferroelectric film one has to solve equation (9) with boundary conditions (10)
at parameter values P(1)

m = 0 and P(2)
m = Pm �= 0 (see figure 1).

Looking for the possibility for obtaining the clearest analytical results, let us solve the
linearized equation (9) with equal extrapolation lengths λ1 = λ2 = λ:

α(T )P − δ
d2 P

dz2
= E0 + 4π(P̄ − P), (11a)(

P + λ
dP

dz

)∣∣∣∣
z=l/2

= 0,

(
P − λ

dP

dz

)∣∣∣∣
z=−l/2

= −Pm. (11b)



The internal electric field originating from the mismatch effect 3521

The solution of (11) has the following form:

PLin(z) = E0 − Pm�(l)/2

α(T ) + �(l)
[1 − ϕ(z)] − Pm

2
[ϕ(z) − ξ(z)]. (12)

Hereafter we used the following designations:

�(l) = 4π

(
2ld

l

)
th(l/2ld)

1 + (λ/ld)th(l/2ld)
, (13a)

ϕ(z) = ch(z/ld)

ch(l/2ld) + (λ/ld)sh(l/2ld)
, (13b)

ξ(z) = sh(z/ld)

sh(l/2ld) + (λ/ld)ch(l/2ld)
. (13c)

The parameter ld = √
δ/(4π + α) is the characteristic length, regarded as known for the bulk

material. The expression for P̄ can be calculated after taking into account that ϕ̄ = �(l)/4π ,
ξ̄ = 0, which leads to

P̄Lin(T, l) = E0

α(T ) + �(l)

[
1 − �(l)

4π

]
− Pm�(l)

2(α(T ) + �(l))

[
1 +

α

4π

]
. (14)

Notice that P̄Lin(T, l) diverges at the critical point α(T ) + �(l) = 0 which is independent
of Pm. It was shown earlier in [10, 11] that the origin of this divergence for the films with
Pm = 0 is the thickness induced ferroelectric–paraelectric phase transition, P̄Lin(T, l) being
the paraelectric phase polarization induced by the external field E0. The latter is not true in
the case considered, Pm �= 0, as follows from equation (14), so the divergence of P̄Lin(T, l)
cannot indicate the phase transition point. As a matter of fact the second term in equation (14)
could be considered as a film self-polarization originating from the mismatch effect. In order
to show this, let us make some simplifications in equation (14), taking into account that for
most ferroelectrics ld ≈ √

δ/4π ∼ 1–10 Å [9] and

l � ld, λ � ld, α/4π � 1, (15)

so expression (14) can be rewritten as

P̄Lin(T, l, E0) ≈ E0 − Pm�(l)/2

α(T ) + �(l)
. (16)

It is clear from (16) that the combination (E0 − Pm�(l)/2) plays the role of the effective field
that determines the polarization amplitude. Therefore one has to apply a non-zero external
field E0 ≈ Pm�(l)/2 in order to compensate for the internal self-polarization induced by the
mismatch effect. Possible experimental manifestations of this effect will be discussed later.

Note that the linearization of (9) is valid only for the small polarization amplitudes
|P̄Lin/PS| � 1 (hereafter PS = √

αT T ∗
C /β is the spontaneous polarization of the bulk material

at T = 0 K), so the results (12), (14) obtained could not be used in the vicinity of the point
T = T ∗

C where the nonlinear term in equation (9) must be taken into account.

2.3. Free energy with renormalized coefficients

Let us find the approximate solution of the nonlinear equation (9) by the direct variational
method [12]. We will choose the one-parametric trial function in the form of a linearized
solution (12) that satisfies the boundary conditions (10), namely

P(z) = PV[1 − ϕ(z)] − Pm

2
[ϕ(z) − ξ(z)]. (17)
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The amplitude PV must be determined by the minimization of the free energy (6).
Integration in the expression (6) with the trial function (17) leads to the following form of
the free energy:

�G(PV) = Am

2
P2

V +
Dm

3
P3

V +
Bm

4
P4

V − PV[E0 − Em]. (18)

For validity of the inequalities (15) the renormalized coefficients in (18) have the following
form:

Am(T, l) = 4πθ

(
T

T ∗
C

− 1 +
1

θh(1 + �)
+

P2
m

P2
S

(1 + 3�)

4h(1 + �)3

)
, (19)

Bm(l) = β

(
1 − 11 + 27� + 18�2

6h(1 + �)3

)
, (20)

Dm(l) = −β Pm

2h

(
1 − �3

(1 + �)3

)
, (21)

Em(l) = ES
Pm/PS

2h(1 + �)

(
1

θ
− P2

m/P2
S

3(1 + �)2

)
. (22)

Here the following parameters are introduced:

θ = αT T ∗
C

4π
, h = l

2ld
, � = λ

ld
, ES = αT T ∗

C PS, PS =
√

αT T ∗
C /β.

(23)

Note that the odd power P3
V in equation (18) is unusual for cubic symmetry perovskite structure

ferroelectrics: this term as well as Em(l) are absent at Pm = 0 (see equations (21), (22));
i.e. it is related to the mismatch effect. So all the changes in the renormalized coefficients in
comparison with the case of a free-standing film (Pm = 0, see [10]) are expressed in terms of
the dimensionless parameter Pm/PS.

3. Polarization and hysteresis loops

The main advantage of the free energy (18) is that it is an algebraic function of PV, and thus
the dependence of PV(E0, T, l) can be derived directly from the minimization of the free
energy (18) over PV:

Am(T, l)PV + Bm(l)P3
V + Dm(l)P2

V = E0 − Em(l). (24)

As an example, the zero-field temperature dependence of the polarization PV(T, E0 = 0) is
depicted in figure 2, where the curves 1 correspond to the condition Pm = 0. The temperature
dependences represented by curves 1 correspond to those obtained in [10, 11] where PV = 0 at
the temperature of the thickness induced ferroelectric–paraelectric phase transition T = Tcl(l).
The value of Tcl(l)decreases with the film thickness h decreasing and Tcl(l) = 0 at h � 8, which
corresponds to the critical thickness. At Pm �= 0, E0 = 0 the behaviour of PV(T, E0 = 0)

looks like that in the external field and for the thickest film (h = 40) it resembles the behaviour
in the bulk samples (see e.g. [9]). To find the physical meaning of the polarization PV, let us
calculate the average polarization. In accordance with (13b), (17), (19) and (23) the average
polarization acquires the form

P̄ = PV

[
1 − 1

h(1 + �)

]
− Pm

2

1

h(1 + �)
. (25)

Keeping in mind that for most thin ferroelectric films h � 10, � � 10, one can see that
P̄ ≈ PV.
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Figure 2. The temperature dependence of the polarization for θ = 0.01, � = 10, E0 = 0 and
different Pm/PS values: 0 (curves 1), 0.1 (curves 2), 0.2 (curves 3), 0.4 (curves 4), 0.8 (curves 5).

The distribution of the ratio |P(z)|/PS over the coordinate z is represented in figure 3 for
several values of the parameter Pm/PS and � = 10, taking into account the expressions (13b)
and (13c) for ϕ(z) and ξ(z) respectively. One can see that at |Pm/PS| < 1 the profiles P(z) look
like those obtained earlier for Pm = 0 [10, 11], and at Pm/PS| > 1 a strong asymmetry arises.
It originates from the asymmetry of the boundary conditions (11b) caused by the presence of
a substrate.

The typical forms of the hysteresis loops P̄(E0) are represented in figure 4(a). As follows
from expression (24) and figure 4(a) the quasi-equilibrium hysteresis loop shifts as a whole
along the E0/ES axis with Pm/PS increasing. The right-hand-side shift of the hysteresis loop
corresponds to the experimentally observed one [13] in the self-polarized film (compare the
form of curve 2 for h = 40 in figure 4(a) with the loop in figure 4(b)). Indeed, the authors of [13]
came to the conclusion that the shift of the loop is attributable to the natural polarization of
more than 50 µC cm−2 without poling treatment. Because the direction of the shift depends on
Pm/PS sign, hereafter we choose Pm/PS > 0 taking into account the experimental result [13].
Notice that the choice of the sign of Pm/PS leads to PV < 0 in figures 2, 3. The latter follows
from equation (18), because the equilibrium PV at E0 = 0 has to be negative at Em ∼ Pm > 0
(see equation (22)).

The similarity of the calculated and observed hysteresis loops is a point in favour of the
statement that the mechanism of the self-polarization phenomenon in thin ferroelectric films
could be a mismatch effect. The dependence P̄(E0) at Pm = 0 for the thinnest film (h = 8)
has the form characteristic for a paraelectric phase. This confirms the above statements that
the critical thickness is close to h = 8.
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Figure 3. The distribution of the polarization over the coordinate z inside the film for � = 10 and
different Pm/PS values: Pm/PS = 0, 0.4, 1, 2, 8 (curves 1, 2, 3, 4, 5 respectively).
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Figure 4. The typical forms of the hysteresis loops P(E0): (a) theoretical calculation for θ = 0.01,
� = 10, T = 0 and different Pm/PS values: 0 (curves 1), 0.4 (curves 2), 0.8 (curves 3); (b) the
loop of the PZT film on a MgO substrate [13].

One can see that for the loops depicted in figure 4(a) (0 < Pm/PS < 1) the coercive field
increases with film thickness increase. Really, this field can be found from expression (18)
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under the condition d2�G/dP2
V|PV=PVC = 0 which leads to the equation

Am + 3Bm P2
VC + 2Dm PVC = 0. (26)

The quadratic equation (26) can be easily solved:

PVC(T, l) = − Dm(l)

3Bm(l)
±

√(
Dm(l)

3Bm(l)

)2

− Am(T, l)

3Bm(l)
. (27a)

Substitution of PV = PVC into equation (24) yields the exact expression for the coercive field
E0C(T, l):

E0C(T, l) = Em(l) − P2
VC[Dm(l) + 2Bm(l)PVC]. (27b)

Keeping in mind the inequalities (15),we suppose that parameter Pm/PS satisfies the conditions(
Pm

PS

)2

<
3(1 + �)2

θ
,

(
Pm

PS

)2

� 4h2(1 + �)2

θ2
. (28)

Thus equation (27a), when neglecting the term (Dm(l)/3Bm(l))2, can be approximated as
follows:

PVC(T, l) ≈ − Dm(l)

3Bm(l)
±

√
− Am(T, l)

3Bm(l)
. (29)

On substituting (29) into (27b), with the accuracy O(Dm(l)/3Bm(l))2 one obtains that, in the
linear approximation to Pm/PS,

E0C(T, l) ≈ ±2

3

√
− A3

m(T, l)

3Bm(l)
+ Em(l) − Dm(l)

Am(T, l)

3Bm(l)
. (30)

Without a mismatch effect (Pm = 0), Dm = 0, Em = 0, so

PVC(T, l) ≈ ±
√

− Am(T, l)

3Bm(l)
, E0C(T, l) ≈ ±2

3

√
− A3

m(T, l)

3Bm(l)
. (31)

Substitution of Am(T, l) from equation (19) into (31) yields the following expression for the
coercive field E0C:

E0C(Pm = 0, T, h) = ± 2

3
√

3
ES

√(
1 − T

T ∗
C

− 1

θh(1 + �)

)3

,
T

T ∗
C

< 1. (32)

One can see that the third term decreases with h increase, so E0C(Pm = 0) increases
with thickness increase. For the parameters used in figure 4(a) (θ = 0.01, � =
10, T = 0) analytical expression (32) gives E0C(Pm = 0, h = 40)/ES = 0.25 and
E0C(Pm = 0, h = 20)/ES = 0.13; the ratios of these two coercive fields are in good agreement
with the results of numerical calculations depicted in figure 4(a) (see curves 1). At h → ∞
equation (32) transforms into the conventional expression for the coercive field of bulk
materials. The formulae (32) make it possible to calculate hcr or Tcr corresponding to E0C = 0:

hcr(Pm = 0, T ) = 1

θ(1 + �)(1 − T/T ∗
C )

,

Tcr(Pm = 0, h) = T ∗
C

(
1 − 1

θ(1 + �)h

)
.

(33)

Since E0C = 0 at Pm = 0 corresponds to the paraelectric phase, hcr or Tcr has to be the critical
thickness or temperature of the ferroelectric–paraelectric phase transition and equations (33)
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coincide completely with the corresponding expressions in [10, 11]. Note that at Pm �= 0 and
h � 8 the hysteresis loop width �H(T, l) ≈ 4/3

√−A3
m(T, l)/3Bm(l) (see equation (30)) is

close to zero. However, the absence of the loop does not indicate a paraelectric phase for all
Pm/PS ratios. It may be related to the impossibility of switching the large misfit induced field
Em in a thin film.

Let us now consider the thickness dependence of the coercive field given by equation (30)
that takes into account the mismatch effect contribution in the linear approximation to
parameter Pm/PS. Taking into account Em ∼ 1/h, Dm ∼ 1/h (see equations (21), (22)),
the difference �E0C between the coercive fields at Pm �= 0 and at Pm = 0 has to be
inversely proportional to the film thickness h. One can see from figure 4(a) that the ratio
�E0C(h = 40)/�E0C(h = 20) ≈ 0.5, i.e. it is really close to the inverse thickness ratio.

For large enough parameter Pm/PS > 1 one has to take into account nonlinear terms in
Pm/PS in Am(T, l) and Em(l), which do not change the dependence of these coefficients on
the film thickness h (see equations (19), (22)). Therefore the influence of the mismatch effect
decreases with the film thickness increase.

It is evident that the field Em(l) plays the role of a bias field. It is known that biased
ferroelectric hysteresis loops are often observed experimentally (see figure 4(b) and [14, 15]).
Using the experimental value of the bias field E0 that makes the loop symmetrical at E0 = Em,
one can obtain the fitting parameter Pm/PS with the help of the cubic equation (22). Taking
into account the condition θ � 1, this equation has the solution Pm/PS ≈ 2hθ(1 + �)Em/ES.
The extrapolation length � should be obtained from independent measurements, e.g. from
the pyroelectric current spectrum [16]. The dependence of the ratio Em(h)/ES on the film
thickness h is represented in figure 5. It is seen that the internal field increases with thickness
decrease and Em(h)/ES ∼ 1/h (see the inset to figure 5). One can see from equation (24),
that the polarization and other properties have to be dependent on the difference E0 − Em(l),
so screening of the external field E0 by the internal field Em can be expected.

4. Dielectric susceptibility and phase diagram

The linear dielectric susceptibility χ = dPV/dE0|E0=0 can be obtained from (24):

χ(T, l) = 1

Am + 3Bm P2
V + 2Dm PV

∣∣∣∣
E0→0

. (34)

Let us find the temperature of susceptibility maximum or divergence—Tm(l)—from the
condition dχ(T, l)/dT = 0. The derivative dPV(T, l)/dT obtained from the equation (24)
corresponds to the equilibrium condition PV(Tm, l)(E0 − Em(l)) � 0. After some elementary
transformations (see the appendix) one obtains that the maximum of the static susceptibility
must satisfy the conditions

P2
V(Tm, l) = Am(Tm, l)

3Bm(l)
, (35a)

χ(Tm, l) = 1

2(3Bm P2
V(Tm, l) + Dm(l)PV(Tm, l))

, (35b)

4P3
V(Tm, l) +

Dm(l)

Bm(l)
P2

V(Tm, l) = E0 − Em(l)

Bm(l)
. (35c)

It should be underlined that equation (35c) reflects the influence of the external electric field
E0 on the value of Tm. To obtain the expression for Tm(l, E0) let us make some simplifications
in equation (35c). Having used (15), (28), we can neglect the term Dm(l)P2

V(Tm, l)/Bm(l)
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Figure 6. The dependence of the susceptibility maximum temperature Tm on the film thickness
h for θ = 0.01, � = 10, E0 = 0 and different Pm/PS values: (a) 0 (curve 1), 0.1 (curve 2), 0.2
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in (35c) and obtain that

Tm(l, E0) = T ∗
C

[
1 − 1

θh(l)(1 + �)
+ 3

(
E0 − Em(l)

4ES

)2/3
]

. (36)
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Let us put E0 = 0 in equations (22), (36) and obtain that under zero-field conditions

Tm(h) = T ∗
C

[
1 − 1

θh(1 + �)
+

3

4

(
Pm/PS

θh(1 + �)

)2/3
]

. (37)

The thickness dependence of the maximum susceptibility temperature Tm(l) is depicted in
figure 6, which could be regarded as a phase diagram, taking into account that Tm(l) used to be
considered as the temperature of the ferroelectric–paraelectric phase transition. One can see the
essential difference between the phase diagrams for 0 < Pm/PS < 1 and Pm/PS � 1 (compare
figures 6(a) and (b)). It follows from figure 6(a) that the critical thickness that corresponds
to Tm = 0 decreases with the mismatch effect increase; the dependence (Tm − T ∗

C ) ∼ 1/h
is in agreement with previous results at Pm = 0 [10]. Contrary to this, at Pm/PS = 2 the
temperature Tm �= 0 even at l = 4ld, i.e. for ultrathin (close to monolayer) film (see curve
3 in the inset to figure 6(b)). Further increase of the Pm/PS ratio made Tm/T ∗

C > 1 for
a wide region of the film thickness (see curves 4, 5 in figure 6(b)). Therefore there is no
possibility of obtaining Tm = 0 for Pm/PS > 1 at any small thickness of a film and so
there is no thickness induced ferroelectric–paraelectric phase transition. This could explain
the conservation of ferroelectric phase in practically monolayer films, observed earlier (see
e.g. [17, 18]). The value Pm/PS = 1 may be considered as a boundary between these two
types of behaviour—with and without a thickness induced transition. However, as follows
from curve 2 in figure 6(b), for the monolayer film Tm ≈ 0, so for Pm/PS = 1 the phase
transition could exist. For the case 0 � Pm/PS � 1 one can expect anomalies in the dielectric
permittivity at the critical temperature or critical thickness.

The maximum linear static susceptibility could be obtained from (35b) and (35c) under
the condition of (28) validity as follows:

χ(Tm, l) ≈ 1

3 3
√

Bm Em(l)2/2
. (38)

One can see from (38) that the susceptibility (34) diverges at T = Tm(l) only if Em = 0,
i.e. Pm = 0 (see equation (22)). In such a case, Am(Tm, l) = 0 because Am(Tm, l) ≈
3/2 3

√
Bm Em(l)2/2 at E0 = 0. Moreover, at Pm �= 0, susceptibility χ(T, l) only has a

maximum at T = Tm(l), which becomes diffuse as the Pm/PS absolute value increases (see
figure 7). It follows from equations (38), (22) that the susceptibility maximum has the view
χ(Tm, h) ∼ h2/3(Pm/PS)

−2/3, so the maximum becomes sharper and higher with film thickness
increase and mismatch polarization decrease. The power law obtained with exponent 2/3 for
this behaviour can be checked with the help of experimental data for the film susceptibility
dependence on the temperature, film thickness and type of substrate. The analytical expression
for the shift of Tm depicted in figure 7, depending on the film thickness and mismatch effect
value, is given by equation (37): the shift increases as C1 + C2(Pm/PS)

2/3 at fixed thickness
and decreases as C3 −C4/h +C5/h2/3 at fixed Pm/PS value. Here C1,2 and C3,4,5 are constants
independent of Pm/PS and the h values respectively. The observation of the Tm shift can also
be useful for checking the validity of the proposed model.

It should be noted that we calculated all the data in figures 2–7 on the basis of exact
formulae, while approximate expressions, e.g. (36)–(38), were derived for the sake of
illustration.

5. Discussion

The mismatch effect considered in this paper is related to the mechanical strain tensor uxx

originating from the difference in substrate and film lattice constants, thermal coefficients and
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Figure 7. The temperature dependence of the averaged susceptibility for θ = 0.01, � = 10,
E0 = 0 and different Pm/PS values: 0 (curves 1), 0.1 (curves 2), 0.2 (curves 3), 0.4 (curves 4), 0.8
(curves 5).

growth imperfections. The latter depend on the technological process of film fabrication while
the others are governed by the substrate–film pair. The mechanical strain influences the electric
polarization dependent bulk part of the free energy via electrostriction (see equations (6), (8))
and via the piezoelectric effect on the surface (see equations (4), (5)). The latter effect appears
even in cubic lattices because of the absence of an inversion centre in the vicinity of the surface.
Because the inversion disappears in the z direction only, while it exists in the x and y ones,
the only possible non-zero piezoelectric coefficient related to uxx is dxxz ≡ d . As a result,
permanent electric polarization on the surface Pz ≡ Pm arises (see equation (7)), while nothing
of this kind exists in the x or y directions. Because of this, we supposed that the mismatch
effect caused the film self-polarization phenomenon. The shift of the hysteresis loops and the
coercive field asymmetry �E0C obtained in this paper are known to be characteristic features
observed experimentally for self-polarized film (see figure 4(b)).

Since �E0C and the coercive field itself are defined essentially by the Em field, let us
estimate its value. To do this we take the following reasonable values of the parameters:
d ∼ (10−5–10−6) CGSE, δ ∼ (10−14–10−16) cm2, Um ∼ 10−2, θ ∼ 5 × 10−2, ld ∼ 10−8 cm,
µ ∼ (5–0.5) × 104 dyn cm−2, so Pm = Um/d ∼ (103–104) CGSE and Em ≈ 4π Pm(ld/l)

(1+λ/ld)
∼

ld/l
(1+λ/ld)

(104–105) CGSE ∼ ld/l
(1+λ/ld)

3×(103–104) kV cm−1. For l/2ld ∼ 10 and λ/ ld ∼ 10 one

obtains that Em ∼ (30–300) kV cm−1. This is in reasonable agreement with the experimental
value E0C ∼ 200 kV cm−1 obtained for thick enough film (see figure 4(b)). Note that the
Em value obtained shows that this mismatch induced internal field is really able to induce
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self-polarization and to screen (at least partially) the external field E0 in thin ferroelectric
films.

On the other hand, the theoretical forecast of �E0C ∼ (Pm/PS) · 1/h obtained here for
|Pm|/PS < 1 should be compared with the experimentally observed size effect of coercive
field asymmetry (if any) and its dependence on the type of substrate and technological process
for self-polarized film. The size effect of the coercive field E0C and its asymmetry �E0C

for the case Pm/PS > 1, when ferroelectricity remains in ultrathin films [17, 18], was not
considered in our paper. Because of this and since at the transition from thin to ultrathin
films a change of the switching mechanism from domain nucleation to a homogeneous one
(Landau–Khalatnikov) has to be taken into account [19], the size effect is beyond the scope of
this paper.

It should be noted that the proposed explanation of the self-polarization phenomenon can
be considered as a preliminary one, because more detailed calculations of this phenomenon
have to include calculations on the basis of free energy with three components of polarization
Px , Py and Pz . These calculations are in progress now.

The observation of the other theoretical forecasts, e.g. χ(Tm, h) ∼ h2/3(PS/Pm)−2/3, as
well as the peculiar dependence of χ(Tm, h, Pm) (see figure 7) could be useful for checking
the validity of the proposed model, when size effects are related to thickness induced phase
transitions, namely, for the cases |Pm|/PS < 1 (i.e. when the polarization induced by the
mismatch effect on the surface is smaller than the bulk one). The latter is also valid at Pm = 0,
because the extrapolation length λ > 0, as follows from equation (7) because δ > 0, µ > 0.
The positive sign of the extrapolation length makes it impossible to explain the reasons for
the ferroelectric phase stability in some monolayer films (see e.g. [17, 18]). Our consideration
of surface polarization induced by a large enough mismatch effect (the cases of Pm/PS > 1)
showed that the physical mechanism of ferroelectric phase conservation for up to one-layer
film is the mismatch effect. Experimental confirmation of this statement with different choices
of the film–substrate pair is extremely desirable.
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Appendix

Let us find the temperature Tm(l) of the susceptibility maximum or divergence from
equation (24) and the condition dχ(T, l)/dT = 0. Taking into account that only Am and
PV depend on temperature T , we derive that

dχ(T, l)

dT
= −d Am/dT + (6Bm PV + 2Dm)dPV/dT

(Am + 3Bm P2
V + 2Dm PV)2

= 0,

d(Am PV + Bm P3
V + Dm P2

V)

dT

≡ PV
d Am

dT
+ (Am + 3Bm P2

V + 2Dm PV)
dPV

dT
= d(E0 − Em)

dT
≡ 0.

(A.1)

Directly from the system (A.1), one obtains that

dPV

dT
= −d Am

dT

1

6Bm PV + 2Dm
,

dPV

dT
= −PV

d Am

dT

1

Am + 3Bm P2
V + 2Dm PV

.

(A.2)
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The left-hand sides of equations (A.2) are identical; thus from the identity of the right-hand
sides we obtain the following equation for PV(Tm, l):

1

6Bm PV + 2Dm
= PV

Am + 3Bm P2
V + 2Dm PV

. (A.3)

From equation (A.3) we obtain Am + 3Bm P2
V + 2Dm PV = PV(6Bm PV + 2Dm) and so

P2
V(Tm, l) = Am(Tm, l)

3Bm(l)
. (A.4)

Having substituted (A.4) in the form Am(Tm, l) = 3Bm(l)P2
V(Tm, l) into (24) and (34),

we immediately obtain equations (35c) and (35b) correspondingly. In contrast, having
substituted (A.4) directly into (24), one obtains the equation for Am(Tm, l), namely

± 4Bm(l)

(
Am(Tm, l)

3Bm(l)

)3/2

+
Am(Tm, l)Dm(l)

3Bm(l)
= E0 − Em(l). (A.5)

In accordance with the inequalities (28), the second term in the left-hand side of equation (A.5)
can be neglected and then Am(Tm, l) ≈ 3

2
3
√

Bm(E0 − Em(l))2/2. The formulae (37), (38) were
derived from the latter expression and equation (19).
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